1,442 research outputs found

    Field-programmable technology: Today’s and tomorrow’s

    Get PDF

    A Domain Specific Approach to High Performance Heterogeneous Computing

    Full text link
    Users of heterogeneous computing systems face two problems: firstly, in understanding the trade-off relationships between the observable characteristics of their applications, such as latency and quality of the result, and secondly, how to exploit knowledge of these characteristics to allocate work to distributed computing platforms efficiently. A domain specific approach addresses both of these problems. By considering a subset of operations or functions, models of the observable characteristics or domain metrics may be formulated in advance, and populated at run-time for task instances. These metric models can then be used to express the allocation of work as a constrained integer program, which can be solved using heuristics, machine learning or Mixed Integer Linear Programming (MILP) frameworks. These claims are illustrated using the example domain of derivatives pricing in computational finance, with the domain metrics of workload latency or makespan and pricing accuracy. For a large, varied workload of 128 Black-Scholes and Heston model-based option pricing tasks, running upon a diverse array of 16 Multicore CPUs, GPUs and FPGAs platforms, predictions made by models of both the makespan and accuracy are generally within 10% of the run-time performance. When these models are used as inputs to machine learning and MILP-based workload allocation approaches, a latency improvement of up to 24 and 270 times over the heuristic approach is seen.Comment: 14 pages, preprint draft, minor revisio

    Seeing Shapes in Clouds: On the Performance-Cost trade-off for Heterogeneous Infrastructure-as-a-Service

    Full text link
    In the near future FPGAs will be available by the hour, however this new Infrastructure as a Service (IaaS) usage mode presents both an opportunity and a challenge: The opportunity is that programmers can potentially trade resources for performance on a much larger scale, for much shorter periods of time than before. The challenge is in finding and traversing the trade-off for heterogeneous IaaS that guarantees increased resources result in the greatest possible increased performance. Such a trade-off is Pareto optimal. The Pareto optimal trade-off for clusters of heterogeneous resources can be found by solving multiple, multi-objective optimisation problems, resulting in an optimal allocation of tasks to the available platforms. Solving these optimisation programs can be done using simple heuristic approaches or formal Mixed Integer Linear Programming (MILP) techniques. When pricing 128 financial options using a Monte Carlo algorithm upon a heterogeneous cluster of Multicore CPU, GPU and FPGA platforms, the MILP approach produces a trade-off that is up to 110% faster than a heuristic approach, and over 50% cheaper. These results suggest that high quality performance-resource trade-offs of heterogeneous IaaS are best realised through a formal optimisation approach.Comment: Presented at Second International Workshop on FPGAs for Software Programmers (FSP 2015) (arXiv:1508.06320

    Using Statistical Assertions to Guide Self-Adaptive Systems

    Get PDF
    Self-adaptive systems need to monitor themselves, to check their internal behaviour and design assumptions about runtime inputs and conditions. This kind of monitoring for self-adaptive systems can include collecting statistics about such systems themselves which can be computationally intensive (for detailed statistics) and hence time consuming, with possible negative impact on self-adaptive response time. To mitigate this limitation, we extend the technique of in-circuit runtime assertions to cover statistical assertions in hardware. The presented designs implement several statistical operators that can be exploited by self-adaptive systems; a novel optimization is developed for reducing the number of pairwise operators from ON to Olog⁡N. To illustrate the practicability and industrial relevance of our proposed approach, we evaluate our designs, chosen from a class of possible application scenarios, for their resource usage and the tradeoffs between hardware and software implementations

    A Comment on the Implementation of the Ziggurat Method

    Get PDF
    We show that the short period of the uniform random number generator in the published implementation of Marsaglia and Tsang's Ziggurat method for generating random deviates can lead to poor distributions. Changing the uniform random number generator used in its implementation fixes this issue.
    corecore